On decomposing regular graphs into isomorphic double-stars
نویسندگان
چکیده
A double-star is a tree with exactly two vertices of degree greater than 1. If T is a double-star where the two vertices of degree greater than one have degrees k1+1 and k2+1, then T is denoted by Sk1,k2 . In this note, we show that every double-star with n edges decomposes every 2n-regular graph. We also show that the double-star Sk,k−1 decomposes every 2k-regular graph that contains a perfect matching.
منابع مشابه
Decomposing highly edge-connected graphs into trees of small diameter
The Tree Decomposition Conjecture by Bárat and Thomassen states that for every tree T there exists a natural number k(T ) such that the following holds: If G is a k(T )-edge-connected simple graph with size divisible by the size of T , then G can be edge-decomposed into subgraphs isomorphic to T . The results on modulo k-orientations by Thomassen show that the Tree Decomposition Conjecture hold...
متن کاملThe 2-star spectrum of stars
Let K be a family of graphs. A K-decomposition, D , of a graph H (called the host) is a partition of the edges of H such that the subgraph induced by each part of the partition (called blocks) is isomorphic to an element of K. The chromatic index of the decomposition, denoted χ′(D), is the minimum number of colors required to color each block in the decomposition so that blocks that share a com...
متن کاملA graphical difference between the inverse and regular semigroups
In this paper we investigate the Green graphs for the regular and inverse semigroups by considering the Green classes of them. And by using the properties of these semigroups, we prove that all of the five Green graphs for the inverse semigroups are isomorphic complete graphs, while this doesn't hold for the regular semigroups. In other words, we prove that in a regular se...
متن کاملOn Edge-Decomposition of Cubic Graphs into Copies of the Double-Star with Four Edges
A tree containing exactly two non-pendant vertices is called a double-star. Let $k_1$ and $k_2$ be two positive integers. The double-star with degree sequence $(k_1+1, k_2+1, 1, ldots, 1)$ is denoted by $S_{k_1, k_2}$. It is known that a cubic graph has an $S_{1,1}$-decomposition if and only if it contains a perfect matching. In this paper, we study the $S_{1,2}$-decomposit...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 35 شماره
صفحات -
تاریخ انتشار 2015